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We establish the limiting dynamics of a class of inhomogeneous bipolaronic
models for superconductivity which incorporate deviations from the homoge-
neous models strong enough to require disjoint representations. The models are
of the Hubbard type and the thermodynamics of their homogeneous part has
been already elaborated by the authors. Now the dynamics of the systems is
evaluated in terms of a generalized perturbation theory and leads to a C*-dy-
namical system over a classically extended algebra of observables. The classical
part of the dynamical system, expressed by a set of 15 nonlinear differential
equations, is observed to be independent from the perturbations. The KMS
states of the C*-dynamical system are determined on the state space of the
extended algebra of observables. The subsimplices of KMS states with unbroken
symmetries are investigated and used to define the ``type'' of a phase. The KMS
phase diagrams are worked out explicitly and compared with the thermo-
dynamic phase structures obtained in the preceding works.

KEY WORDS: Classically extended observable algebra; inhomogeneous
bipolaronic superconductors; global C*-dynamics; KMS states; types of KMS
states; KMS phase diagrams; physical phase diagrams.

1. INTRODUCTION

Already in the early theoretical treatments of superconductivity not only
the equilibrium values but also the time dependent behaviour of the collec-
tive variables��in first line of the complex gap parameter��have been
studied. Its rigorous microscopic derivation is, however, still an open
problem for tempered interactions. For a class of long-range interactions
recent developments(3, 4) in operator algebraic meanfield theory made
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accessible even a more ambitious dynamical program, namely the so-called
global limiting dynamics, which is understood as the combination of the
classical macro-dynamics with the (effective) quantum dynamics for the
microscopic degrees of freedom. Both the macroscopic and microscopic
parts of the limiting dynamics, interrelated by so-called cocycle equations,
are uniquely determined by the original family of local Hamiltonians. From
that input it is then derived by a systematic treatment, involving a
C*-extension of the quasi-local lattice algebra��but without any space for
ad hoc assumptions��the limiting dynamics in form of a C*-dynamical
system.

We have previously(3) carried through this scheme for a model class,
which includes the strong coupling BCS-model. In the latter, by definition,
not only the pairing interaction but also the kinetic energy is momentum
independent for electrons near the Fermi surface. This renders the model
homogeneous, that is invariant under permutations of the one lattice point
observables, which are taken from a 16-dimensional quasi-spin algebra.
The natural set of collective variables comprises, therefore, 15 parameters,
of which only three seem to be of direct physical relevance in equilibrium.

The generalization of the dynamics from homogeneous to weakly
inhomogeneous long range models has been worked out in ref. 4 for the
case of equilibrium representations. The effective dynamics, which describes
only small fluctuations about the equilibrium in this representation, is
obtained by the thermodynamic limit of a net of local perturbation series,
with the homogeneous dynamics as zeroth order term.

In the present investigation we combine both techniques for the first
time and elaborate the limiting collective dynamics of a weakly inhomoge-
neous bipolaronic superconductor model. In various theoretical groups,
cf. especially ref. 5 and references therein, this model is considered relevant
for certain high-Tc aspects. It has a more involved operator structure than
the BCS-Hamiltonian. First, in order to comprise also antiferromagnetic
background features, connected with so-called charge ordering aspects,
a bipartite lattice structure is introduced in our formulation, reflecting itself
in the doubling of the operates in the quasilocal algebra. Second it involves
two kinds of interactions, originating from the original hopping and
Coulomb interaction terms, respectively. This leads, beside the phase angle
correlations in the superconducting region, to the appearance of a second
ordering phenomenon, which creates different charge densities in the two
sub-lattices, and thus breaks spontaneously the sub-lattice exchange sym-
metry of the local input interactions.

As mentioned above, we extend in our approach the quasilocal
algebra of the microscopic observables to a larger C*-algebra, comprising
also classical collective variables. (This contrasts the usual strategy for
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homogeneous meanfield-models, where the weak closure of the represented
quasilocal C*-algebra is employed, leading to a von Neumann algebra with
only the equilibrium values of the collective variables in its center.) Their
dynamical evolution may be expressed by a set of nonlinear differential
equations, but it is still part of a quantum mechanical, C*-dynamical
system.

This form of an Heisenberg dynamics is essential for the discussion of
the thermodynamical aspects, especially of the KMS- and minimal free
energy states, since the fundamental investigations in this area start from
abstract C*-dynamical systems. Especially, it is also a prerequisite to apply
the theory of metastable states as formulated, e.g., in refs. 6 and 7. Since we
deal here with an explicitly given type of Heisenberg dynamics, we do not
need the more technical concepts of C*-dynamical systems.

In Section 2 we translate the model assumptions into asymptotic rela-
tions for the interaction parameters, clarifying especially, what it means to
be near the homogenization average.

The second step in Section 2 deals with the appropriate extension of
the quasilocal algebra to comprise also the possible values of the collective
observables, which here appear in the nontrivial center of the C*-algebra CG .
This leads to a universal shape of the sectorial decomposition of the states
(in terms of a subcentral measure), which is basic for all later arguments.

In Section 3 the homogeneous dynamics is elaborated, the structure of
which is known in principle from the algebraic meanfield theory, here con-
stituting the zeroth order of perturbation theory. Its classical part can be
expressed on an 15-dimensional parameter space. The one-cell operators,
which specify the physical meaning of the coordinates, are given in
Appendix A, the equations for the modified phase angel dynamics are
written out in Appendix B.

The rather new step is the perturbation theory of Section 4 for the
long-range interacting inhomogeneous models. It is demonstrated, that the
model assumptions allow for a generalized perturbational treatment in
arbitrary, faithful representations of the classically extended C*-algebra.
The convergence estimations, which are based on commutator expressions
quite similar to those in ref. 4, are independent from the representation,
and in this sense ``algebraic.'' In this way there is no need to require the
states of the perturbed system to be normal to the unperturbed ones.

In Section 5 we determine the homogeneous and inhomogeneous
KMS-states and analyze their properties.

In the last Section we classify the KMS-states according to their sym-
metry types and arrive at KMS-phase diagrams, which are definitely richer
than the thermodynamic phase diagrams for the minimal free energy states.
In contradistinction to short range interactions, the KMS-condition is
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shown here not to be equivalent with the minimal free energy condition,
but only with the stationarity condition, providing the principal possibility
of metastable states in the above mentioned sense. Since we concentrate
here on the dynamical foundation of thermodynamic features, deduced
from the global C*-dynamical system of the bipolaronic superconductor by
the KMS-condition, we have deferred the elaboration of many mathematical
details, especially the extensibility of the relevant inhomogeneous micro-
scopic states to the classical observables, to a later occasion.

2. THE QUASILOCAL MODEL FRAMEWORK
AND ITS EXTENSION

2.1. The Local Model Hamiltonians

Let us first briefly review the quasilocal, algebraic framework, which
has been also the starting point for our previous, purely thermo-statistical
discussions refs. 1 and 2: The C*-algebra A of observables for the elec-
tronic system of our model is specified as it is usual in the frame of
operator algebraic many body physics (see refs. 8, 9, 7 and references
therein) by the algebras for each local subregion of the lattice. As men-
tioned in the Introduction we are dealing with a bipartite lattice in con-
figuration space K, but we denote the local regions simply by 4 # L :=
[4$/K | |4$|<�] and express the bipartite structure in terms of the com-
posite site-algebra B :=B� �B� with B� $M2(C) for each lattice site i # K.
Then the local algebras of observables for each 4 # L are given by A4=
}i # 4 Bi , where Bi is an isomorphic copy of B, placed on the lattice site i.
The canonical embedding of A4 into A4$ , whenever 4/4$, is a prerequisite
for the C*-inductive limit construction (cf. ref. 10). It leads to the smallest
C*-algebra containing all local algebras, hence the naming ``quasilocal
algebra:''

A :=}
i # K

Bi := .
4 # L

A4
& }&

It is physically the set of all purely microscopic observables, for which it is
the characteristic feature to be independent from the (macro) state of the
environment. In order to make explicit the bipartite structure of this
observable algebra we introduce the notation c1 :=c�1 # B and c2 :=
1�c # B for c # B� . For a # B we write ai # A to designate the operator
} } } �1�a�1� } } } , where a is situated at the i th component of the
tensor product. The annihilation (creation) operator for a pair of phonon
dressed electrons, a bipolaron, at the lattice site i is denoted by br(V)

i # B i ,
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r # [1, 2]. They fulfill the commutation relations for so-called hard-core
bosons:

[brV
i , bs

j ]=brV
i bs

j &b s
j brV

i =$rs $ij (2n̂r
i &1)

[brV
i , bs

j ]=brV
i bs

j +b s
j brV

i =$rs $ij1, (b r
i )

2=0

for all r, s # [1, 2] and all i # K, where we have introduced the bipolaronic
number operator n̂r

i :=b rV
i b r

i at site i.
As is described in ref. 5, under certain conditions the following

Hamiltonian is a useful approximation for the electronic part of the con-
sidered class of systems:

H4=
1

|4| \ :
i1 , i2 # 4

vi1 i2
n̂1

i1
n̂2

i2
&2 :

i1 , i2 # 4

(ti1 i2
b1V

i1
b2

i2
+t� i1 i2

b1
i1

b2V
i2

)+ # A4 (2.1)

Here, the first part of the interaction, the distance-dependent, static
Coulomb term, has to be symmetric, vi1 i2

=vi2 i1
# R, whereas the spatially

inhomogeneous hopping term for pairs, as an intrinsically dynamical,
phase-shifting potential, might well be complex with, ti1 i2

=t� i2 i1
.

For the present models it is a well established strategy to assume long
range behaviour in the sense that the interactions behave at large distances
like a non vanishing constant. Thus the following spatially homogeneous
model should serve well as reference system:

H 0
4=

1
|4| \v :

i1 , i2 # 4

n̂1
i1

n̂2
i2

&2t :
i1 , i2 # 4

b1V
i1

b2
i2

+b1
i1

b2V
i2 + # A4 (2.2)

We assume for the occurring constants, the averaged interaction potentials,
that v, t>0.

The local Hamiltonians H 0
4 lead, of course, to a treatable model in

virtue of their high symmetry. Especially they are invariant under the
group of permutations P(4) of the lattice sites in the local sublattice 4,

3_(H 0
4)=H 0

4 for all _ # P(4) and all 4 # L

where 3_ is first defined on the elementary tensors by 3_(}i # 4 ai ) :=
}i # 4 a_(i) , with ai # A and with _(i)=i outside from 4, and then linearly
and continuously extended to all of A. The group of all (finite) permuta-
tions is introduced as

P= .
4 # L

P(4) (2.3)
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Both the original and homogenized Hamiltonians possess so-called internal
symmetries, which act within each one-lattice-site algebra in the same
manner. For this we recognize here the symmetry under the permutation of
the two sublattices, which forms together with the identity the two-point
symmetric group S2 , and the symmetry under gauge transformations,
which constitute the one-dimensional torus group SU(1) (cf., e.g., ref. 1).
Thus we have as the total group of internal symmetries for our models
S2_SU(1), with the unique Haar measure d+h .

The indicated internal symmetries act in A via C*-automorphisms,
which are again uniquely determined by the way they transform elementary
tensors:

:v \}
i # K

ai+ :=}
i # K

vaiv* (2.4)

Here v is a unitary in B and ai is an arbitrary element in B, both of them
embedded into Bi/A.

In order to formulate the symmetry operations also in the Schro� dinger
picture recall that the set of states S(A), which consists of all expectation
functionals, is a w*-compact and convex subset of the dual Banach space A*.
If a group G acts via automorphisms :g , g # G, in A the dual transforma-
tions &g , defined by

(&g(.); A) :=(.; :g&1(A)) (2.5)

transform the states accordingly. We denote the subset of all permutation
invariant states by SP.

We still have to make mathematically precise, in which sense the
homogenized model should be near a given inhomogeneous one. For this
we introduce for each 4 the difference operator

P4 :=H4&H 0
4=

1
|4| \ :

i1 , i2 # 4

$vi1 i2
n̂1

i1
n̂2

i2
&2 :

i1 , i2 # 4

($ti1 i2
b1V

i1
b2

i2
+$ti1 i2

b1
i1

b2V
i2

)+
(2.6)

between the original and the homogeneous Hamiltonian, where

$vi1 i2
:=vi1 i2

&v and $ti1 i2
:=ti1 i2

&t

In usual mathematical treatments of perturbed C*-dynamical systems the
net of perturbations has to be uniformly bounded. In the more recent
developments of algebraic meanfield theory [P4 | 4 # L] would be a so-
called ``quasi-symmetric'' net (cf. refs. 11 and 12). We found however (see
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refs. 4 and 13), that much weaker conditions on the perturbations allow
still for a mathematically well established, dynamical perturbation theory.
We, therefore, postulate the following relations for our class of bipolaronic
models:

General Assumption for the Model Class 2.1. The averages
of the inhomogeneous interactions have to exist in the thermodynamic
limit

v= lim
4 # L

1
|4|2 :

i1 , i2 # 4

vi1 i2
, t= lim

4 # L

1
|4|2 :

i1 , i2 # 4

ti1 i2
(2.7)

Further the limits

lim
i2 � �

$vi1 i2
=$vi1

, lim
i2 � �

$ti1 i2
=$ti1

with lim
i1 � �

$vi1
=0 and lim

i1 � �
$ti1

=0 (2.8)

as well as

lim
4 # L

1
|4|

:
i1 , i2 # 4

|$vi1 i2
&$v i1

&$v i2
|=0

(2.9)

lim
4 # L

1
|4|

:
i1 , i2 # 4

|$ti1 i2
&$ti1

&$ti2
|=0

have to exist with the given limiting values. Here lim4 # L always denotes
the net limit over the index set L.

Let us emphasize that we do not use any summability condition for $ti

or $vi , so that &P4 & may tend with increasing 4 to infinity in a rather
strong sense.

2.2. The Classically Extended Algebra of Observables

It is well known that the so-called ``mean-field operators,'' the spatial
averages of one-cell operators,

m4(a) :=
1

|4|
:

i # 4

ai=
1

|4|
:

i # 4

Tia0 with a # B (2.10)

(Ti a lattice translation) which occur in H 0
4 (cf., Eq. (3.2)) explicitly, but in

a hidden form also in H4 , do not converge in the norm topology and,
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therefore, have no limit in A. They may, however, converge in a weaker
topology to limits outside of A. The set of states, which can be resolved by
the meanfield operators, is SP/S(A), the set of all permutation invariant
states. In the meanfield expectations an arbitrary state may be replaced by
its spatial, permutation invariant average. On the other side, each mean-
field operator assumes all its possible expectation values already in SP. The
convex, compact set SP is a Bauer simplex having a compact extremal
boundary �eSP.(14) Thus there exists a unique decomposition for each state
| # SP(A) into states of the extremal boundary, the latter being just the
factor states of SP and the only states of the product form }\ with
\ # S(B).

We now want to give a more explicit characterization of the elements
in �eSP. Since the single site algebras Bi of our model are of the form
B=M2(C)}M2(C)$M4(C), we may use the Lie-algebra G for the Lie-
group SU(4) to introduce a distinguished antihermitian basis [;1,..., ;15],
resp. the hermitian counterpart [i;1,..., i;15]. This basis is given in
Appendix A. A parameterization of �eSP can then be introduced by the
evaluation of the 15 nontrivial, independent coordinates and leads to the
affine homeomorphism

S(B) % \ [ ((\; i;1) ,..., (\; i;15) )=: x\ # R15

The preceding formula discloses, that S(B) may also be considered as a
subset EG of G*, the dual space of the Lie algebra G. In order to conform
with previous notational conventions (ranging back to geometric quantiza-
tion), we consider �eSP(A) as parameterized in terms of the differentiable
manifold EG , keeping nevertheless often the symbol \ for its elements
instead of x\ . We write in this sense for the extremal decomposition in SP:

.=|
EG

}* d+.(*), . # SP (2.11)

In view of these considerations we base the dynamics of our models on the
following observable algebra.

Definition 2.2. The classically-extended observable-algebra is
defined as the C*-algebra

CG $A}C(EG )$C(EG , A) (2.12)

where C(EG , A) are the continuous functions from EG into A.

Not all states on CG are physically relevant, since their values for the
collective variables should be deduceable from their values on the quasilocal
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observables, that is, they should be ``microscopically extended.'' The impli-
cations of this subsidiary condition will be elaborated elsewhere. For the
decomposition of the equilibrium states, the following results are basic.

Proposition 2.3. (i) For each state | # S(CG ) there is a Borel
measure +| and a +| -a.e. unique measurable function EG % * �
|* # S(CG ), providing the following integral decomposition of | (called the
sector decomposition):

(|; A)=|
EG

(|* ; A(*)) d+|(*) A # CG (2.13)

(ii) For each state | # S(CG ) the measure +| is (after transposition
to a measure on S(CG )) subcentral.

(iii) The foregoing decomposition is the central decomposition, iff
the component states |* are factor states +|-a.e.

3. THE GLOBAL DYNAMICS OF THE HOMOGENEOUS
SYSTEM

We assume throughout the following that we have an arbitrary but
fixed representation of A, in which all meanfield limits exist in the weak
topology and which is extended to a faithful representation of CG in the
same Hilbert space. The _-weak and strong operator topologies, employed
for the subsequent limits, refer always to this representation. Since CG is
isomorphic to its representation, we omit the representation symbol.

The reduced local Hamiltonian of the homogeneous system is
obtained by subtracting the chemical and electrostatic potential energy

H r0
4 (+) :=H r0

4 :=H 0
4&+N4 :=H 0

4&+ :
i # 4

(n̂1
i +n̂2

i ) (3.1)

H r0
4 can be expressed as a polynomial in the local space averaged operators

m4(i;l ):

H r0
4 =|4| Q(m4(i;1),..., m4(i;15))

=|4| v(2m4(i;15)2+2m4(i;14)2+m4(i;3)&m4(i;7))

_(2m4(i;8)2+2m4(i;9)2+m4(i;3)+m4(i;7))

&|4| 2t(4m4(i;8) m4(i;15)+4m4(i;9) m4(i;14))

&|4| +(2m4(i;15)2+2m4(i;14)2+2m4(i;8)2

+2m4(i;9)2+2m4(i;3)) (3.2)
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We introduce the reduced local homogeneous Heisenberg dynamics

{0, 4
t ( } )=exp[itH r0

4 ] } exp[&itH r0
4 ]

and obtain analogously as in ref. 3��which for itself is a modification of the
general strategy developed in ref. 15��the following results for its ther-
modynamic limit:

Theorem 3.1. (i) For the net of local Hamiltonians [H r0
4 | 4 # L]

there exists a unique C*-dynamical system ({0
t )t # R (that is a point wise norm

continuous group of V-automorphisms) on CG , such that for each A # CG ,
which necessarily possesses a local approximation A=s-lim4 # L A4 , it holds:

{0
t (A)=s-lim

4 # L
exp[itH r0

4 ] A4 exp[&itH r0
4 ] for all t # R (3.3)

(ii) For each * # EG and each t we introduce a C*-automorphism
{0*

t , which acts on local elements A # A as

{0*
t (A)=\}

i # K

exp[ith0
i (*)]+ A \}

i # K

exp[&ith0
i (*)]+ (3.4)

With this sector dependent dynamics the action of the global {0
t on

A=(* [ A(*)) # CG has the explicit form

{0
t (A)(*)={0*

t (A(#t(*))) (3.5)

Here, at each lattice site i we have the same one-cell Hamiltonian
h0(*) # B, of the form

h0(*)= :
15

l=1

�Q
�x j

(*)(i; j )

=v((*; n̂2) n̂1+(*; n̂1) n̂2)&2t((*; b2) b1V+(*; b2V) b1)

&2t((*; b1) b2V+(*; b1V) b2)&+(n̂1+n̂2) (3.6)

Making use of the structure constants C kj
l of the Lie-algebra G, the classical

flow (#t)t # R on EG is given by the vector field

*Q: R15 � R15, (*Q(*))k= :
15

j=1

�Q
�x j

(*) \ :
15

l=1

C kj
l xl (*)+ (3.7)
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in terms of the differential equation

d#t(*)
dt

=*Q(#t(*)) for * # EG , t # R (3.8)

Its explicit form in special coordinates is given in Appendix B.

Proof. (i) follows from ref. 11 with [12, Prop. 4.2] (cf. also refs. 16
and 17).

(ii) is an immediate consequence from (i), where the flow and the
effective single site Hamiltonian are calculated from Eq. (3.2). K

4. THE GLOBAL DYNAMICS OF THE INHOMOGENEOUS
SYSTEM

As the starting point we first calculate the limit of the local Heisenberg
generators in increasing regions for the perturbed system, which act on a
fixed local observable A4 # A4 . For such kinds of limits we use weaker-
than-norm topologies (the strong operator topology and the _-weak topol-
ogy) in our fixed representation. The subsequent elaboration, based on the
evaluation of commutators shows, that our results do not depend on the
representation.

Introducing H r
4(+) :=H r

4 :=H4&+N4 we investigate the existence
and form of the limit:

s-lim
4$ # L

[H r
4$ , A4]=s-lim

4$ # L
[H r0

4$ , A4]+s-lim
4$ # L

[P4$ , A4]

where H r0
4 , H4 and P4 are from Eqs. (3.1), (2.1) and (2.6).

Lemma 4.1. With the model assumptions 2.1 for P4 it holds for
fixed A4 # A4

s-lim
4$ # L

[P4$ , A4]=[PG
4 , A4] (4.1)

with

PG
4= :

i # 4

$hi # C(EG , A4)/C(EG , A)$CG (4.2)
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where $hi is given by

$hi (*)=$vi ((*; n̂1) n̂2
i +(*; n̂2) n̂1

i )&2$t i ((*; b2) b1V
i +(*; b1) b2V

i )

&2$t i ((*; b1V) b2
i +(*; b2V) b1

i ) (4.3)

Proof. The reasoning runs parallel to that in ref. 4. K

For general quasilocal observables the limiting perturbation series
cannot be written down, because of the lack of the limiting perturbation
operator. Nevertheless we may announce, as one of our main results, the
following structure of a well-defined, algebraic limiting dynamics for the
inhomogeneous system:

Theorem 4.2. (i) For each model satisfying the model assump-
tions 2.1 there exists a unique C*-dynamical system (CG , R, {t) such that
for each A # C(EG , A4), with 4 # L, there exists a t0=t0(4)>0 allowing
for the limit relation

{t(A)=_&w& lim
4$ # L

({0
t )P4$ (A)=({0

t )PA
G

(A) for |t|<t0 (4.4)

(ii) Let us introduce the sector dependent automorphism group in A:

{*
t (A)=\}

i # K

exp[ithi (*)]+ A \}
i # K

exp[&ithi (*)]+ , A # A (4.5)

where hi (*) :=h0
i (*)+$hi (*) with h0

i from Eq. (3.6) and $hi from Eq. (4.3),
this is

hi (*)=(v+$vi )((*; n̂1) n̂2
i +(*; n̂2) n̂1

i )

&2(t+$t i )((*; b2) b1V
i +(*; b1) b2V

i )

&2(t+$t i )((*; b1V) b2
i +(*; b2V) b1

i ) (4.6)

Then it holds for A=(* [ A(*)) # CG

{t(A)(*)={*
t (A(#t(*))) (4.7)

The classical flow #t on EG is the same as in the homogeneous case.

Proof. The proof again parallels the reasoning given in the appendix
of ref. 4. K
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5. THE KMS-STATES

The KMS-condition was introduced by refs. 18 and 19 in the context of
Greens functions and in ref. 20 in its algebraic version. In the C*-algebraic
formalism a state | is called a ;-KMS-state of the C*-dynamical system
({t)t # R if for all {t-analytic elements A, B in the C*-algebra it holds

(|; A{ i;(B)) =(|; BA) (5.1)

where i; is the special imaginary value of time given by the natural tem-
perature ;.

The grandcanonical KMS-states, we are interested in, are indexed
usually by the two real numbers (;, +), where the natural temperature ;
occurs in Eq. (5.1) and the chemical potential + is introduced in Eq. (3.1)
as a parameter of the reduced dynamics. The set of all ;-KMS-states for
the (homogeneous) C*-dynamical system (CG , R, {(0)

t (+)) be denoted by
S(0)

KMS(;, +).

5.1. The KMS-States of the Homogeneous Model

First we calculate the extremal KMS-states, the candidates for the
pure equilibrium phases, for the homogeneous model.

Proposition 5.1. The extremal ;-KMS-states in �e S0
KMS(;, +) are

exactly the states with the sector decomposition:

|0=|
EG

|0
*$ $(*$&*) d*$=|0

* (5.2)

where |0
* has as restriction to A the homogeneous product state

} * with * of the form *=
e&;h0(*)

tr[e&;h0(*)]
(5.3)

h0(*) being taken from Eq. (3.6).
Thus the point support * # EG of the Dirac measure $(*$&*) d*$ has

coordinates, which satisfy the self-consistency equations

(*; i;l)=tr { e&;h0(*)i;l

tr[e&;h0(*)]= (5.4)

for all members of the basis [i;1,..., i;15], and, reversely, each solution of
Eq. (5.4) determines a homogeneous KMS-state |0

* .
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The explicit form of h0
i (\) in Eqs. (3.6) and (5.4), and the relations

from Eq. (A.2) imply that the KMS-states for the homogeneous limiting
dynamics are characterized by the following self-consistency equations for
the two real parameters n1 :=(*; n̂1) and n2 :=(*; n̂2) and for the two
complex parameters 21e&i�1 :=t(*; b1) and 22e&i�2 :=t(*; b2):

n1=
1
2

&
vn2&+

2 - (vn2&+)2+16(22)2
tanh \;

2
- (vn2&+)2+16(22)2+

n2=
1
2

&
vn1&+

2 - (vn1&+)2+16(21)2
tanh \;

2
- (vn1&+)2+16(21)2+

(5.5)

21ei�1=
t22ei�2

- (vn2&+)2+16(22)2
tanh \;

2
- (vn2&+)2+16(22)2+

22ei�2=
t21ei�1

- (vn1&+)1+16(21)2
tanh \;

2
- (vn1&+)2+16(21)2+

From the last two equations one sees, that only the macroscopic phase
difference between the two sublattice systems may be fixed by the above
equations. Thus we introduce the new phase variables:

� :=(�1+�2)�2 2� :=(�2&�1)�2 (5.6)

In terms of the mentioned six real parameters we give the explicit form of
the effective one-cell Hamiltonians for each value of the macroscopic
phases and for each distribution of the two electron densities on the sub-
lattices:

h0�
12(*) :=(vn2&+) n̂1+(vn1&+) n̂2&2(22e&(i�2)(�+2�)b1V

+22e+(i�2)(�+2�)b1)

&2(21e&(i�2)(�&2�)b2V+21e+(i�2)(�&2�)b2)
(5.7)

h0�
21(*) :=(vn2&+) n̂2+(vn1&+) n̂1&2(22e&(i�2)(�+2�)b2V

+22e+(i�2)(�+2�)b2)

&2(21e&(i�2)(�&2�)b1V+21e+(i�2)(�&2�)b1)

The corresponding one-cell KMS-states have the form:

*0�
12 :=

e&;h12
0�(*)

tr[e&;h12
0*(*)]

, *0�
21 :=

e&;h21
0�(*)

tr[e&;h21
0*(*)]

(5.8)
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This makes explicit, that for our model interaction, only the mentioned six
collective variables possibly appear in the extremal KMS-states and con-
stitute the thermodynamic order parameters. The remaining nine collective
coordinates do not appear in the effective energy expressions and are not
incorporated into our discussion. For the equilibrium indicated by (;, +)
one has to calculate all solutions of the self-consistency equations in order
to determine �eS0

KMS(;, +) in terms of the chosen parameterization. From
the above selfconsistency equations it follows, that 2� can have only the
trivial equilibrium values Z?, and we fix it at zero

2� :=0

Thus the obtained parameter set

E(;, +) :=[* # EG | * solves the selfconsistency Eq. (5.4)] (5.9)

is a subset of R5, which is compact, since the order parameters vary in
bounded intervals, and the continuous selfconsistency equations have no
singular points. Since the elements of E(;, +) are invariant under #t and
permutation invariance is ensured for our considered product states, the
only symmetries to be discussed are the internal symmetries from
S2_SU(1).

Proposition 5.2. (i) The sector decomposition

|0=|
E(;, +)

|0
* d+|0(*) (5.10)

provides an affine homeomorphism

S0
KMS(;, +) % |0 W +|0 # M 1

+((;, +)) (5.11)

revealing the set of homogeneous KMS-states as a Bauer simplex (that is
a simplex with compact extremal boundary, the latter being here the point
measures on E(;, +)).

(ii) If * (resp. x*) is a solution of Eq. (5.4), then also #g* is so for
all g # S2 _SU(1). Thus E(;, +) is a S2_SU(1)-invariant set and, there-
fore, is the union of orbits. We write:

E(;, +)= .
v # V

O*(v) (5.12)

where the representatives of an orbit are indexed in terms of the index
set V, a measurable subset of Rn, for some n�5, which may be chosen
compact.
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(iii) Associated with each orbit O*(v) is a unique invariant KMS-state
|� 0

v , obtained by mixing with the Haar measure over the orbit. It has the
explicit form:

|� 0
v=|

2?

0 \1
2

}
i # K

*0�
12+

1
2

}
i # K

*0�
21 + d�

2?
(5.13)

where *0�
12 and *0�

21 are determined by Eqs. (5.5) and (5.7) and their
parameters are related with the orbit index v. There are four types of
invariant KMS-states of the form of Eq. (5.13): (1) The S2 _SU(1)-
integral is trivial (normal states); (2) only the S2 -integral is trivial (super-
conducting states); (3) only the SU(1)-integral is trivial (charge ordered
states); (4) no orbit integral is trivial (mixed phase states).

(iv) For the set of all invariant KMS-states one has the affine
homeomorphism

S� 0
KMS(;, +) % |� 0 W +� | # M 1

+(V ) (5.14)

revealing S� 0
KMS(;, +) to constitute a Bauer simplex. The |� 0

v are exactly the
extremal S2_SU(1)-invariant states in S0

KMS(;, +). Since there are at
most four extremal invariant KMS-states, S� 0

KMS(;, +) is affine isomorphic
to a face of a tetrahedron.

5.2. The KMS-States of the Inhomogeneous Model

The treatment of the KMS-states SKMS(;, +) of the inhomogeneous
limiting dynamics essentially parallels the homogeneous case, in spite of
these states being macroscopically different from each other��for given ;
and +��in certain instances.

Proposition 5.3. The extremal ;-KMS-states in �eSKMS(;, +) are
exactly the states of the form

|=|
EG

|*$ $(*$&*) d*$=|* (5.15)

where |* has as its restriction to A the inhomogeneous product state

}
i # K

*i (*) with *i (*)=
e&;hi (*)

trB [e&;hi (*)]
(5.16)
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hi being taken from Eq. (4.6). The point support of the Dirac measure
$(*$&*) d*$ is uniquely determined for each ;-KMS-state by the same self-
consistency equations (5.4) as for the homogeneous case, implying:

�eSKMS(;, +)=[|* | * # E(;, +)] (5.17)

With the definitions n i
r :=(1+($vi �v)) nr , 2 i

r :=|(1+($ti �t)) t(*; br) |=
|1+($ti �t)| 2r and $� i :=&Arg(1+($ti �t)) we can adopt the notation
from Eq. (5.7) for the inhomogeneous case (note, that we set 2�=0):

h i�
12 :=(vn i

2&+) n̂1+(vn i
1&+) n̂2&22 i

2(e&i(�&$�i)b1V+e+i(�&$�i)b1)

&22 i
1(e&i(�&$�i)b2V+e+i(�&$�i)b2)

h i�
21 :=(vn i

2&+) n̂2+(vn i
1&+) n̂1&22 i

2(e&i(�&$�i)b2V+e+i(�&$�i)b2)

&22 i
1(e&i(�&$�i)b1V+e+i(�&$�i)b1)

(5.18)
* i�

12(*) :=
e&;h12

i� (*)

tr[e&;h12
i� (*)]

* i�
21(*) :=

e&;h21
i� (*)

tr[e&;h21
i� (*)]

With this definitions let us describe the sets of KMS-states for the inhomo-
geneous dynamics, observing that the latter has also S2_SU(1) as an
exact internal symmetry group.

Proposition 5.4. (i) The inhomogeneous KMS-states | # SKMS

(;, +) are exactly the states of S(CG ) which have the sector decomposition

|=|
E(;, +)

|* d+|(*) (5.19)

with the |* from Prop. 5.3. This provides an affine homeomorphism

SKMS(;, +) % | W + # M 1
+(E(;, +)) (5.20)

disclosing the set of inhomogeneous KMS-states to form a Bauer simplex.
Associating with each | # SKMS(;, +) the homogeneous KMS-state
|0 # S0

KMS(;, +) with the same sectorial decomposition measure establishes
an affine homeomorphism between the two sets of KMS-states, which only
locally��but not globally��may be expressed in terms of a KMS perturba-
tion expansion.
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(ii) Associated with each orbit O*(v) is a unique invariant KMS-
state |� v , obtained by mixing via the Haar measure over the orbit. It has
the explicit form:

|� v=|
2?

0 \1
2

}
i # K

* i�
12+

1
2

}
i # K

* i�
21+ d�

2?
(5.21)

where * i�
12 and * i�

21 are determined by Eqs. (5.18) and and their parameters
are related with the orbit index v. There are the previous four types of
invariant KMS-states:

(1) The S2 _SU(1)-integral is trivial (normal states N);

(2) only the S2 -integral is trivial (superconducting states S);

(3) only the SU(1)-integral is trivial (charge ordered states CO);

(4) no orbit integral is trivial (mixed phase states M).

(iii) For the set of all invariant KMS-states one has the affine
homeomorphism

S� KMS(;, +) W M 1
+(V ) (5.22)

showing S� KMS(;, +) to be a Bauer simplex, which is affine isomorphic to
a face of the tetrahedron. The |� v are exactly the extremal S2_SU(1)-
invariant states in SKMS(;, +).

6. THE KMS-PHASE DIAGRAMS

In order to discuss the obtained KMS-states from a thermodynamic
point of view, we recall, that here, as in most (quantum) lattice systems,
the equilibrium states have a natural partition into ``types'' according to
occurrence and coexistence of the broken internal symmetries. In this
respect there is no difference to the (stable) thermodynamic phases, and we
may subdivide the space R+_R of the external parameters ;, + into
regions of equal types in order to draw something like a KMS-phase
diagram. The complete KMS-phase structure is given by the bundle

PKMS :=[SKMS(;, +) | (;, +) # R+_R] (6.1)

For a concise characterization of the type we coarsen the simplices
SKMS(;, +) to the sub-simplices S� KMS(;, +) of invariant KMS-states
(under internal symmetries). By means of Prop. 5.4 (iii) we map each
S� KMS(;, +) onto a face of the tetrahedron in an affinely isomorphic man-
ner. Let us combine the symbols for the four extremal points of the
tetrahedron to the set [N, S, CO, M]. Then each of the 16 subsets of
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[N, S, CO, M] (including the empty and the total set) gives a symbol,
which describes biunivocally a face of the tetrahedron. By the above men-
tioned affine mapping also each face of S� KMS(;, +) is mapped onto a face
of the tetrahedron and thus also acquires a subset of [N, S, CO, M] as an
identifying symbol.

The idea is now, that the simplices of the tetrahedron may serve to
characterize the basic structure, that is the type, of SKMS(;, +) as well as
of a single KMS-state. This generalizes the notion of a type already intro-
duced for the 4 extremal invariant KMS-states of Section 5, where each for
itself constitutes a face of S� KMS(;, +), which is mapped onto an extremal
point of the tetrahedron. These are designated by a one-element symbol
and are called elementary types.

Definition 6.1. (i) The type of SKMS(;, +) is the tetrahedron
face (resp. its symbol) onto which S� KMS(;, +) is mapped via Prop. 5.4 (iii).
This defines in the (;, +)- or in the (;, n)-parameter space regions of equal
type, the boundaries of which giving the ``KMS-phase boundaries.''

(ii) The type of a single KMS-state is defined as follows: Form its
invariant mean over the internal symmetry group and determine the
smallest face of S� KMS(;, +) which contains this invariant KMS-state. The
corresponding tetrahedron face (resp. its symbol) is then taken as the type
of the given KMS-state.

In general SKMS(;, +) includes invariant states associated with dif-
ferent orbits and their convex combinations, leading to the various faces of
S� KMS(;, +). Thus the types for the SKMS(;, +) are chosen in priciple from
16 possibilities. (The empty set may occur in systems, where there is, e.g.,
a maximal temperature and ;&1 is larger.) If there are invariant states in
SKMS(;, +) associated with different orbits then, and only then, one would
speak in the case of physical equilibrium states (with minimal free energy)
of phase coexistence. Note that the convex combination of KMS-states
belonging to one orbit is a purely statistical one.

The 5 types of sets of KMS-states, occurring in the present model
class, may easily be deduced from the observations, that the normal phase
N satisfies the KMS-condition for each (;, +) and has thus always to be
included in the phase type, and that the mixed phase M needs the presence
of the S- and CO-solutions of the KMS-condition, obtaining thus all of the
three other elementary types necessarily as partners.

The types of the single KMS-states are then given by all possible sub-
simplices of the five mentioned ones, including the four elementary types.
An arbitrary extremal KMS-states (with broken symmetry) is always
mapped��via averaging over one orbit��onto an extremal invariant KMS-
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state, and thus obtains an elementary type. Reversely, an extremal
invariant KMS-state is decomposed (uniquely) into extremal KMS-states
(of the same type), where only the latter are usually called pure phase states
in statistical mechanics. The invariant (``mixed phase'') M-states are
extremal invariant KMS-states and thus are of elementary type rather than
being coexistence states.

As is shown in the preceding Section there is an affine homeo-
morphism between SKMS(;, +) of a given model and S0

KMS(;, +) of the
associated homogenized model. Now let us take into account, that the type
is an affine invariant in order to arrive at

Proposition 6.2. For a model in the considered class the type
of the set SKMS(;, +), for given (;, +) # R+_R, equals the type of
S0

KMS(;, +), where the latter are the KMS-states of the associated homoge-
neous model. Thus, for fixed (;, +) the types of the KMS-states, but not
the states (with their fluctuations) for themselves, depend only on the
averaged model constants v and t.

The 5 types of KMS-sets for our model class are listed in Table 1,
together with the back translation into invariant KMS-states. The kind of
broken symmetry for the pure phase states is seen from the non-trivial
orbit structure of the invariant KMS-states. As mentioned before, a KMS-
set which includes the M-type must be affinely isomorphic to the whole
tetraeder. States with all 4 elementary phase types occur in this set and
would, as physical phases, coexist. The states besides the mixing coeffi-
cients *i , i=1, 2, 3, 4, are extremal invariant KMS-states. The last one is
the invariant M-state in its decomposition into pure phase states. These
pure phase states, given by an infinite tensor product over position-depen-
dent one-cell density operators, have the same sharp macroscopic phase
angle (with microscopic fluctuations) but different condensate densities
(with microscopic fluctuations) on the two sublattices. Since they combine
both kinds of symmetry break down, the application of the internal sym-
metry transformations generates the maximal orbit and makes in this way
explicit the M-type character also for these pure phase states. Altogether,
each group of nonvanishing *i 's specifies the type of the KMS-state, shown
in the table, which is obtained by mixing KMS-states of elementary types,
imitating phase coexistence.

We may now use the calculational material of ref. 2 for the homoge-
neous models to draw the KMS-phase diagram. In order to use the more
detailing (;, n)-coordinates we observe that the limiting equation

n(;, +) := lim
4 # L �|(;, +);

N4

|4|� (6.2)
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Table 1. KMS-States Which Are Invariant Under the Internal Symmetry
Group SU(1)_S2

Phase region Invariant KMS states

|=}
i # K

* i N

|=* }
i # K

* i N+(1&*) ( 1
2 }

i # K

* i CO
12 + 1

2 }
i # K

* i CO
21 ) with * # [0, 1]

|=* }
i # K

* i N+(1&*) |
2?

0

}
i # K

* i� S d�

2?
with * # [0, 1]

|=*1 }
i # K

*i N+*2 \1
2

}
i # K

* i CO
12 +

1
2

}
i # K

* i CO
21 ++*3 |

2?

0

}
i # K

* i� S d�

2?

with *1, 2, 3 # [0, 1] and *1+*2+*3=1

|=*1 }
i # K

*i N+*2 \1
2

}
i # K

* i CO
12 +

1
2

}
i # K

* i CO
21 ++*3 |

2?

0

}
i # K

* i� S d�

2?

+*4 |
2?

0 \1
2

}
i # K

* i� S
12 +

1
2

}
i # K

* i� S
12 + d�

2?

with *1, 2, 3, 4 # [0, 1] and *1+*2+*3+*4=1

with |(;, +) # SKMS(;, +), may be solved for the function

R+_[0, 2] % (;, n) � +(;, n) # R (6.3)

by the same reasoning as in ref. 2. The resulting KMS-phase diagram is
pictured in Fig. 1. Before being able to perform a comparison between
KMS-phase diagrams and physical phase diagrams we have to introduce
the thermodynamic functions over appropriate (nonequilibrium) states of
our inhomogeneous models. We do this��without giving existence proofs��
for certain microscopically extended states | # S(CG ), and start with their
restrictions |4 :=||A4

, for which there is a unique density operator D4 .
In view of the grand canonical ensemble we define the local internal energy
density

u4(;, +; |4) :=�|4 ;
H r

4(+)
|4| � (6.4)
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Fig. 1. KMS-phase diagram for the homogeneous as well as for the inhomogeneous limiting
KMS dynamics for the parameter settings t=1 and v>4.

with H r
4(+) the reduced model Hamiltonians, and the local entropy density

s4(|4) := &
tr4[D4 ln D4]

|4|
(6.5)

In case that the limits exist, we write for the limiting free energy density

f (;, +; |)= lim
4 # L

f (;, +; |4)= lim
4 # L

[u4(;, +; |4)&;s4(|4)] (6.6)

For our considered models the limiting internal energy density exists in all
microscopically extended states. Omitting in this work technical details we
only communicate that there is a sufficiently large class STh(CG ) of micro-
scopically extended states��comprising our inhomogeneous KMS-states��
in which the limiting entropy density exists with the same value as for the
corresponding homogenized states.2

Proposition 6.3. Let (;, +) # R+_R be arbitrary but fixed.

(i) For | # STh(CG ), with the sector components |* and the
measure +| # M 1

+(EG ) it holds
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f (;, +; |)=|
EG

f (;, +; |*) d+|(*)

=|
EG

f (;, +; |0
*) d+|(*)

= f (;, +; |0) \(;, +) # R+_R (6.7)

(ii) f (;, +; |) is an affine lower semicontinuous function in |.

(iii) f (;, +; |)= f (;, +; &g|), \g # S2_SU(1).

(iv) The function

EG % * � f (;, +; |0
*)

is differentiable in the open subset of invertible one-cell density operators *.
It holds

E(;, +)=[* # EG | df (;, +; |0
*)=0] (6.8)

E(;, +) having been defined in (5.9).

(v) The set

M(;, +) :=[* # EG | * � f (;, +; |0
*) is minimal]

is a non-empty, closed subset of E(;, +).

(vi) The set STh(;, +) of all absolute minima of the function
STh(CG ) % | � f (;, +; |) is a w*-closed sub-simplex of SKMS(;, +).

For | # STh(CG ) with sector measure +| it holds

| # STh(;, +) � supp +|/M(;, +) (6.9)

(vii) The type of STh(;, +) (as a subset of [N, S, CO, M]) is a sub-
set of the type of SKMS(;, +).

(viii) It holds the reduction shown in Table 2.

Proof. Besides the technical details, which will be given elsewhere,
the results are rather straightforward, if one notes that

df (;, +; |0
*)=h(*)&

1
;

(c+ln *)

where c is an unspecified c-number. (The basic manifold is here the convex
set EG , on which the differentiation takes place. Since there is the sub-
sidiary condition trB (*)=1, c remains unspecified in the total differential,
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fCO< fS

fCO> fS

grand
canonical

canonical

Table 2. Type Reduction of the KMS-States

SKMS(;, +) type Minimal free energy principle STh(;, +) type

[N] wwwwwww� [N]

[N, CO] wwwwwww� [CO]

[N, S] wwwwwww� [S]

[CO]

[N, S, CO]

[S]

[S, CO]

[N, S, CO, M]

[M]

but is determined by the normalization afterwards. The tangent space to
EG is isomorphic to B* and the cotangent vectors of the total differential
may be realized by��non-unique��elements in B**=B.) Thus df =0 is
equivalent to the self-consistency equation (5.4), which in turn is equivalent
to the KMS condition. The assertions on M(;, +) follow from the Bauer
minimum principle (cf. e.g., ref. 8) and from the fact that a face of a simplex
is a simplex for itself. K

The thermodynamic phase structure is expressed by the bundle

PTh :=[STh(;, +) | (;, +) # R+_R] (6.10)

In contrast to the equivalence of the KMS-condition with local thermo-
dynamic stability (cf. refs. 21, 22, and 9) we may draw from the proceeding
discussion the

Conclusion 6.4. In the present model class the KMS-condition is
equivalent to the stationarity of the limiting free energy density, that is to
thermodynamic equilibrium (with uniform intensive contact variables)
without thermodynamic stability (minimality of the free energy density3).
The thermodynamic phase structure PTh differs, in general, significantly
from the KMS-Phase structure PKMS (to which it is a ``sub substructure'').

774 Gerisch et al.

3 In the thermodynamic treatment of equilibrium and stability one varies, of course, not | but
macroscopic state variables, beside the fixed ; and +. This is done virtually (Gibbs) or in
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ref. 25).



The specification, which of the present, non absolutely stable KMS-
states are in fact metastable, would require a more detailed, numerical
investigation of the extremal free energy states.

APPENDIX A. BASIS OF THE LIE ALGEBRA G OF SU(4)

With the Pauli spin matrices _x , _y , _z we define

e1 :=
1
4

(_x�_x&_y�_y), e2 :=
1
4

(_x�_y&_y �_x)

e3 :=
1
4

(_z�1+1�_z)

e4 :=
1

2 - 2
(_z�_z), e5 :=

1
4

(_x�_x+_y�_y)

e6 :=
1
4

(_x�_y+_y�_x)

e7 :=
1
4

(1�_z&_z�1), e8 :=
1

2 - 2
(1�_x)

e9 :=
1

2 - 2
(1�_y)

e10 :=
1

2 - 2
(_x�_z), e11 :=

&1

2 - 2
(_y �_z), e12 :=

&1

2 - 2
(_z�_y)

e13 :=
1

2 - 2
(_z�_x), e14 :=

1

2 - 2
(_y �1), e15 :=

1

2 - 2
(_x�1)

With the unitary transformation V: C2_C2 � C4=C�C2 defined by

(1, 0)� (1, 0) � (1, 0, 0, 0)=(1, 0)� (0, 0)

(0, 1)� (0, 1) � (0, 1, 0, 0)=(0, 1)� (0, 0)

(0, 1)� (1, 0) � (0, 0, 1, 0)=(0, 0)� (1, 0)

(1, 0)� (0, 1) � (0, 0, 0, 1)=(0, 0)� (0, 1)
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we define the elements ;k :=&iVekV &1 of the basis [;1,..., ;15] for the Lie
algebra of SU(4). We then have:

i;1=
1
2 \

_x

02

02

02+ , i;2=
1
2 \

_y

02

02

02 + , i;3=
1
2 \

_z

02

02

02+
i;4=

1

2 - 2 \
1

02

02

&1+ , i;5=
1
2 \

02

02

02

_x+ , i;6=
1
2 \

02

02

02

_y+
i;7=

1
2 \

02

02

02

_z+ , i;8=
1

2 - 2 \
02

_x

_x

02 + , i;9=
1

2 - 2 \
02

_y

_y

02 +
i;10=

1

2 - 2 \
02

_z

_z

02+ , i;11=
i

2 - 2 \
02

&1

1

02+
i;12=

i

2 - 2 \
02

&_x

_x

02 +
i;13=

i

2 - 2 \
02

&_y

_y

02 + , i;14=
i

2 - 2 \
02

&_z

_z

02+
i;15=

1

2 - 2 \
02

1

1

02+
which satisfy the orthonormality condition tr[(i;k)* (i; l)]= 1

2 $kl .
The structure constants C jk

l are defined as

[; j, ;k]= :
15

l=1

C jk
l ;l (A.1)

Finally we want to remark that certain elements of the basis may be inter-
preted as bipolaronic operators:

b1V= 1
2 (b1

x+ib1
y)=- 2 (e15+ie14)

b1= 1
2 (b1

x&ib1
y)=- 2 (e15&ie14)

b2V= 1
2 (b2

x+ib2
y)=- 2 (e8+ie9)

(A.2)
b2V= 1

2 (b2
x&ib2

y)=- 2 (e8&ie9)

b1
z=2(e3&e7)

b2
z=2(e3+e7)
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APPENDIX B. THE CLASSICAL PART OF THE LIMITING
DYNAMICAL SYSTEM

The classical dynamics (#t)t # R is given by the fifteen dimensional
vector field from Eq. (3.7) that constitutes the Hamiltonian flow *Q and
generates a differential equation for #t on the differentiable manifold EG .
The part for the coordinates x3=(i;3; .*) , x7=(i;7; .*), x8=(i;8; .*) ,
x9=(i;9; .*) , x14=(i;14; .*) and x15=(i;15; .*) which correspond to
the bipolaronic expectation values n1 , n2 , 21 , 22 , �1 and �2 by Eq. (A.1)
decouple from the differential equations for the coordinates [x1 , x2 , x4 , x5 ,
x6 , x10 , x11 , x12 , x13] which do depend on the values of the former
mentioned but not vice versa. Therefore we will only give the part of the
Hamiltonian flow corresponding to the ``physically relevant'' mean-field
expectation values, which is sufficient to calculate the stationarity condition
for the KMS-states:

d#t(*)3

dt
=0

d#t(*)7

dt
=8t(#t(*)8 #t(*)14&#t(*)9 #t(*)15)

d#t(*)8

dt
=&4t#t(*)14 (#t(*)3+#t(*)7)

+2v#t(*)9 (2(#t(*)3+#t(*)7)&1)((#t(*)15)2+(#t(*)14)2)

+v#t(*)9 (2(&(#t(*)7)2+(#t(*)3)2)+#t(*)7&#t(*)3)

&+#t(*)9 (2(#t(*)3+#t(*)7)&1)

d#t(*)9

dt
=4t#t(*)15 (#t(*)3+#t(*)7)

&2v#t(*)8 (2(#t(*)3+#t(*)7)&1)((#t(*)15)2+(#t(*)14)2)

+v#t(*)8 (2((#t(*)7)2&(#t(*)3)2)&#t(*)7+#t(*)3)

++#t(*)8 (2(#t(*)3+#t(*)7)&1)

d#t(*)14

dt
=4t#t(*)8 (#t(*)3&#t(*)7)

+2v#t(*)15 (2(&#t(*)3+#t(*)7)+1)((#t(*)8)2+(#t(*)9)2)

+v#t(*)15 (2((#t(*)7)2&(#t(*)3)2)+#t(*)7+#t(*)3)

++#t(*)15 (2(#t(*)3&#t(*)7)&1)
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d#t(*)15

dt
=4t#t(*)9 (&#t(*)3+#t(*)7)

&2v#t(*)14 (2(&#t(*)3+#t(*)7)+1)((#t(*)8)2+(#t(*)9)2)

&v#t(*)14 (2((#t(*)7)2&(#t(*)3)2)+#t(*)7+#t(*)3)

&+#t(*)14 (2(#t(*)3&#t(*)7)&1)

ACKNOWLEDGMENTS

This work was supported by the Studienstiftung des deutschen Volkes
and by the Deutsche Forschungsgemeinschaft. The authors are grateful to
the referee for suggestions and critical remarks.

REFERENCES

1. T. Gerisch and A. Rieckers, Limiting Gibbs states and phase transitions of a bipartite
meanfield Hubbard-model, J. Stat. Phys. 91:759�786 (1998).

2. T. Gerisch, R. Mu� nzner, and A. Rieckers, Canonical versus grand-canonical free energies
and phase diagrams of a bipolaronic superconductor model, J. Stat. Phys. 92:1021�1049
(1998).

3. T. Gerisch, R. Honegger, and A. Rieckers, Limiting dynamics of generalized Bardeen�
Cooper�Schrieffer models beyond the pair algebra, J. Math. Phys. 34:943�968 (1993).

4. T. Gerisch and A. Rieckers, Limiting dynamics, KMS-states, and macroscopic phase angle
for weakly inhomogeneous BCS-models, Helv. Phys. Acta 70:727�750 (1997).

5. A. S. Alexandrov and N. Mott, Sir, High Temperature Superconductors and Other
Superfluids (Taylor and Francis, London, 1994).

6. G. L. Sewell, Stability, equilibrium and metastability in statistical mechanics, Physics
Reports 57:307�342 (1980).

7. G. L. Sewell, Quantum Theory of Collective Phenomena (Clarendon Press, Oxford, 1986).
8. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics,

Vol. 1 (Springer-Verlag, 1987).
9. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics,

Vol. II (Springer-Verlag, 1981).
10. S. Sakai, C*-Algebras and W*-Algebras (Springer-Verlag, Berlin, 1971).
11. N. G. Duffield and R. F. Werner, Local dynamics of mean-field quantum systems, Helv.

Phys. Acta 65:1016�1054 (1992).
12. T. Gerisch, Local perturbations and limiting Gibbs states of quantum lattice mean-field

systems, Helv. Phys. Acta 67:585�609 (1994).
13. T. Gerisch, A. Rieckers, and M. P. H. Wolff, Heisenberg generators and arveson spectra

of long range interacting quantum lattice systems, preprint, 1999.
14. E. Sto% rmer, Symmetric states of infinite tensor products of C*-algebras, J. Funct. Anal.

3:48�68 (1969).
15. N. G. Duffield and R. F. Werner, Mean-field dynamical semigroups on C*-algebras, Rev.

Math. Phys. 4:383�424 (1992).
16. E. Duffner and A. Rieckers, On the global quantum dynamics of multi-lattice systems with

non-linear classical effects, Z. Naturforsch. 43a:521�532 (1988).

778 Gerisch et al.



17. P. Bo� na, The dynamics of a class of quantum mean-field theories, J. Math. Phys.
29:2223�2235 (1988).

18. R. Kubo, Statistical-mechanical theory of irreversible processes I, J. Phys. Soc. Jpn.
12:570�586 (1957).

19. D. C. Martin and J. Schwinger, Theory of many particle systems I, Phys. Rev.
115:1342�1373 (1959).

20. R. Haag, N. M. Hugenholtz, and M. Winnink, On the equilibrium states in quantum
statistical mechanics, Commun. Math. Phys. 5:215�236 (1967).

21. H. Araki and G. L. Sewell, Local thermodynamical stability and the KMS conditions of
quantum lattice systems, Commun. Math. Phys. 52:103�109 (1977).

22. G. L. Sewell, KMS conditions and local thermodynamical stability of quantum lattice
systems II, Commun. Math. Phys. 55:53�61 (1977).

23. H. Stumpf and A. Rieckers, Thermodynamik I (Vieweg 6 Sohn, Braunschweig, 1976),
470S.

24. A. Rieckers, Composite system approach to thermodynamic stability, Z. Naturforsch.
33a:1406�1421 (1978).

25. R. B. Israel, Convexity in the Theory of Lattice Gases (Princeton University Press, 1979).

779Global C*-Dynamics and KMS States


